Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The proliferation of IoT devices, with various capabilities in sensing, monitoring, and controlling, has prompted diverse emerging applications, highly relying on effective delivery of sensitive information gathered at edge devices to remote controllers for timely responses. To effectively deliver such information/status updates, this paper undertakes a holistic study of AoI in multi-hop networks by considering the relevant and realistic factors, aiming for optimizing information freshness by rapidly shipping sensitive updates captured at a source to its destination. In particular, we consider the multi-channel with OFDM (orthogonal frequency-division multiplexing) spectrum access in multi-hop networks and develop a rigorous mathematical model to optimize AoI at destination nodes. Real-world factors, including orthogonal channel access, wireless interference, and queuing model, are taken into account for the very first time to explore their impacts on the AoI. To this end, we propose two effective algorithms where the first one approximates the optimal solution as closely as we desire while the second one has polynomial time complexity, with a guaranteed performance gap to the optimal solution. The developed model and algorithms enable in-depth studies on AoI optimization problems in OFDM-based multi-hop wireless networks. Numerical results demonstrate that our solutions enjoy better AoI performance and that AoI is affected markedly by those realistic factors taken into our consideration.more » « less
-
Accurate and timely regional weather prediction is vital for sectors dependent on weather-related decisions. Traditional prediction methods, based on atmospheric equations, often struggle with coarse temporal resolutions and inaccuracies. This article presents a novel machine learning (ML) model, called Micro–Macro (MiMa), that integrates both near-surface obser- vational data from Kentucky Mesonet stations (collected every 5 min, known as Micro data) and hourly atmospheric numerical outputs (termed as Macro data) for fine-resolution weather forecasting. The MiMa model employs an encoder–decoder trans- former structure, with two encoders for processing multivariate data from both datasets and a decoder for forecasting weather variables over short time horizons. Each instance of the MiMa model, called a modelet, predicts the values of a specific weather parameter at an individual mesonet station. The approach is extended with Regional MiMa (Re-MiMa) modelets, which are designed to predict weather variables at ungauged locations by training on multivariate data from a few representative stations in a region, tagged with their elevations. Re-MiMa can provide highly accurate predictions across an entire region, even in areas without observational stations. Experimental results show that MiMa significantly outperforms current models, with Re-MiMa offering precise short-term forecasts for ungauged locations, marking a significant advancement in weather forecasting accu- racy and applicability.more » « less
An official website of the United States government
